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1. Introduction

Discretization of continuous probability distributions has garnered considerable attention in recent
years. Traditional discrete distributions like the geometric and Poisson, while widely used, may have
limited applicability when modeling reliability, failure times or count data. This has led to the
development of some discrete distributions based on popular continuous models for reliability, failure
times, etc. Therefore, several discrete distributions have been presented in the literature. Chakraborty
(2015) surveyed different methods for generating discrete analogues of continuous probability
distributions, among these is the survival discretization method. If the underlying continuous failure
time X has the survival function (sf), S(x) = P(X = x) and times are grouped into unit intervals
so that the discrete observed variable is discrete X (dX) = |X], is the largest integer less than or equal

to X, the probability mass function (pmf) of dX can be written as

P(x)=PdX=x)=P(x<dX<x+1)
=S5x)—Skx+1), x=012,... (1)

Therefore, for any continuous distribution, it is possible to construct corresponding discrete
distribution using (1).

The discretization of a continuous distribution using this method retains the same functional form of
the sf, S(x). As a result, many reliability characteristics remain unchanged. This method, which is

widely applied to generate new discrete distributions has received attention in the last four decades.

Many authors applied the general approach of discretization of some known continuous
distributions for use as lifetime distributions. For example, Nakagawa and Osaki (1975) proposed a
discrete Weibull distribution. Roy (2004) proposed a discrete Rayleigh distribution as a particular case
of the discrete Weibull. Krishna and Pundir (2009) derived the discrete Burr XII distribution and
applied it to fit the reliability in series system. Also, they derived the discrete Pareto distribution as a
special case of the discrete Burr XII distribution. Gomez-Deniz and Calderin-Ojeda (2011) constructed
the discrete version of Lindley distribution and used it as an alternative to Poisson distribution to model
automobile claim frequency data. Nekoukhou er al. (2012) presented a version of the discrete
generalized exponential distribution, which can be viewed as different generalization of the geometric
distribution. Moreover, they discussed some of its distributional and moment properties. AL-Huniti
and AL-Dayian (2012) proposed the discrete Burr Type III distribution. Also, they discussed some
important properties and estimated the parameters based on the maximum likelihood (ML) and
Bayesian approaches. Hegazy et al. (2018) presented the discrete Gompertz distribution. In addition,
they discussed some statistical properties of the distribution and estimated the unknown parameters
based on the ML method. Elmorshedy and Eliwa (2019) proposed a two-parameter exponentiated
discrete Lindley distribution and studied some of its statistical properties of the distribution. They used
the ML method to estimate the unknown parameters of the distribution.
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Altun et al. (2022) introduced a study on discrete Bilal distribution with properties and applications
on integer valued autoregressive process and they discussed the structural properties of the proposed
distribution. Also, they used the ML and moments methods to estimate the unknown model parameters.
Almetwally and Ibrahim (2020) proposed the discrete alpha power inverse Lomax distribution with
application of COVID-19 data and discussed some of its statistical properties. They derived the ML
estimators and confidence intervals for the parameters. Eliwa et al. (2020) introduced the discrete
Gompertz-G Family of distributions for over-and under-dispersed data. Also, they studied some of its
distributional properties and reliability characteristics. They used the ML method for estimating the
family parameters. Chotedelok and Bodhisuwan (2020) obtained the discrete exponentiated Pareto
distribution with properties and application.

Tyagi et al. (2020) presented inferences on discrete Rayleigh distribution under Type II censored

data. Ibrahim et al. (2021) derived the discrete analogue of the Weibull-G family. They studied its
properties and estimation the distribution parameters using Bayesian and non- Bayesian estimation
methods. El-Deep ef al. (2021) introduced discrete analog of inverted Topp-Leone distribution.
Eliwa ef al. (2022) introduced a discrete exponential generalized-G family of distributions. A flexible
probability tool for modeling extreme and zero inflated count data under different shapes of hazard
rates. They derived and analyzed many relevant mathematical and statistical properties, among other
they applied some classical estimation methods, including Cramér—von Mises, ordinary least squares,
L-moments, ML, Kolmogorov, bootstrapping and weighted least squares. Additionally, they obtained
the Bayes estimators for the parameters under the squared error loss function. They explained the
usefulness of the class by using four real data sets.

Eliwa et al. (2023) presented univariate probability-G classes for scattered samples under different
forms of hazard: continuous and discrete version with their inference’s tests. They defined a generator
to propose continuous as well as discrete families of distributions. They discussed some mathematical
and statistical properties of these G-classes and described some structural properties of two special
models of these classes.

Abd EL-Hady et al. (2023) derived Discrete exponentiated-Generalized family of distributions
with parameter «, denoted by DE-G family(a)distributions. They obtained some statistical properties
and the estimation of its unknown parameters using the ML method. The corresponding pmf of DE-G
family is given by
P(x;a) =[G(x+ 1D]*—[G(x)]%, x=0,1,2,.., (a > 0). )
The cumulative distribution function (cdf), sf, hazard rate function (hrf) and alternative hrf (ahrf) can

be formulated as:

F(x;a) = [G(x + 1)]*~ x=0,12,.. (a>0), 3)
S(;a)=1-[G(x)]%, x=0,12,.. (a >0), 4)
h(x; o) = LG DITI6EON" x=012, .., (a>0), (5)

1-[G(0)]* ’

and
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x=012,.., (a > 0). (6)

ah(x; ) = ln[ L L6Go)” ],

1-[G(x+1)]@

Adding one or more parameters to a distribution makes the resulting distribution richer and more
flexible for analyzing and modeling data.
Therefore, AL-Sayed et al. (2022) introduced the modified Topp-Leone Chen (MTLCh)

distribution as a composite distribution using the transformation X = %, where T is a rv. They

obtained some statistical properties of the proposed distribution. They derived the ML estimators of
the unknown parameters under progressive Type-II censored samples. They gave a numerical example
to illustrate the theoretical results and used two real data sets to demonstrate how the results can be
used in practice. The probability density function (pdf) and cdf of the MTLCh distribution are,

respectively, given by
f(x:6,2,B) = 226pelPx+220=¢" 1 — exp (22(1 - eﬁx))]g_l, x>0,,A48>0), (7
and

F(x;0,48) = [1—exp (2(1 — e#%))]

where A, 6 are shape parameters and [ is a scale parameter.
This paper is organized as follows: a discrete exponentiated- MTLCh (DE-MTLCh) distribution is

’ x>0,(6,48>0), (8

introduced and some of its statistical properties are derived in Section 2. While, in Section 3, ML
estimators are derived for the unknown parameters. Simulation study and results are presented in
Section 4. Section 5 introduced two real data sets to show the applicability and flexibility of the DE-
MTLCh. Conclusion is discussed in Section 6.

2. Construction of Discrete Exponentiated Modified Topp-Leone Chen Distribution

By substituting the cdf of the MTLCh distribution given by (8) into the general expression for the
pmf (2), the pmf of the DE-MTLCh distribution can be obtained as:

< ad <129
p(x;6,B,a,A) = [1 _ e2A(1-ef +1))] - [1 _ e2A(1-ef )] , x=012,...

(6,a,A,8 > 0). 9)
The cdf, sf, hrf and ahrf of the DE-MTLCh distribution are given by

< ab
F(x0,8,00) = [1— 20" x=012,., (8,02p>0), (10)

[o43)
S(x;6,B,,0) = 1 — [1 - ezx(l-eﬁ’?] , x=0,12,.., (6,a,18>0), (11)
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[1_e27~(1-eﬁ(x+1))]a9_[1_ezh(1—eﬁx)]a9

h(x; 8,8, 0, 1) = — ,x=012..,0,0A8>0), (12)
1_[1_ezx(1—e )]
and
1—[1—e27‘(1‘esx)]a9
ah(x;0,B,a,A) = In o | x=0,12,..,(6,0,A, > 0). (13)
1_[1_e21(1—e )]

There is a relationship between ah(x) and h(x), given by:
h(x) =1 — e 2h®,

The two concepts h(x) and ah(x) have the same monotonic property, i.e., ah(x) is increasing
(decreasing) if and only if h(x) 1is increasing (decreasing).
Plots of pmf, hrf and ahrf of DE-MTLCh distribution are presented in Figures 1-3, for some selected
values of the parameters. Figure 1 shows that the pmf of the

DE-MTLCh distribution can be unimodal, decreasing and increasing according to the selected
value of the parameters. Figures 2 and 3 indicate that the hrf and ahrf of the DE-MTLCh distribution

are decreasing, bathtub and increasing depending on the value of the parameters.
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Figure 1. Plots of the pmf of the DE-MTLCh for different values of 4, 3, 6, «
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Figure 3. Plots of the ahrf of the DE-MTLCh for different values of 0, o, A, 3

2.1 Some statistical properties of discrete exponentiated-modified Topp-Leone Chen distribution

This subsection is devoted to obtain some important statistical properties of the DE-MTLCh

distribution, such as the quantile function, moments, order statistic, Rényi entropy, mean residual
lifetime(MRL), Mean time to failure (MTTF), Mean time between failure (MTBF) and availability(Av).

2.1.1 Quantile function
The u™ quantile x,, of the DE-MTLCh distribution is given by

1 log(l—ul/txe)
x, = [glog|1————*| - 1|, 0<u<1

)

where [X]denotes the smallest integer greater than or equal to X.

Proof
111
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p(X < xy) =u, from(10)

[1 _ ezx(1—eB(Xu+1))]°‘9 >

)

[1 - ez}‘(l_eB(XH))] > ul/oce, (1 —u'la ) > (ezh(l—eB(X““))),

log(l—ul/txe)

log (1 — ul/ae) > 20(1 — ePCxutD) > (1 — ePCxutD)

2A
1
oBCxut) 1 _ 0B e0)
2\
Hence
1
log(1-u /a8
xu=[%1og[1—%;)l—1l, O<u<l1. (15)

Similarly, if p(X = x,) =1 —u, one obtains

1
log(1-u /a8
xuS%logl1—¥l, 0<u< 1. (16)

Combining (15) and (16), one gets

1 log (1 - ul/o‘e) log (1 — ul/oce)
—log |1 — —1< xy<=log|1- :
B8 21 = Mu=p8 21
Hence, x, is an integer value given by
1
log(1-u /a6
xu=[§1og[1—%;)l—1l, O<u<1, (17)

by putting u = 0.5 in (17), one gets the median of the DE-MTLCh distribution as follows
1
log(1-(0.5) /a®
ST LS R

2.1.2 The moments of the discrete exponentiated modified Topp-Leone Chen distribution

a. The non-central moments

The non-central moments of the DE-MTLCh distribution are

My = Tyx" {[1 = e27‘(1—e'3(x+1))]ae ~[1- ezl(l—eBX)]ae}, r=12,.. (18)

In particular, the mean p is given by:
0 0
W= p= Zxx{[1 ] I PGl } (19)

The second non-central moments is given by:
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Wy = Yxer X [p(xi)]-

b. The central moments

The central moments can be obtained by using the relation between the central and non-central

moments as given below.
r S,
u= Z]-rzo (]) (-1) u’ur_]-, r=12,..,
The variance of DE-MTLCh distribution can be obtained as follows:
My =y — 12
Ly = Ty X2 [[1 - eﬂ(l—e‘“"“))]“e ~[1- ezl(l—e‘*")]“e]
2
~|zex]|[1- ] I ezm—em]“e] ]
. )

(20)
c. The standard moments

The rt! standard moments can be obtained as follows:

~ X—p\"

=B ()

21)

The skewness (Sk) and kurtosis (Kur) are, respectively, given by

fiy = ”3—j2 and fi, = E—g where i, =EX-p', r=12,.. (22)
L)

The index of dispersion (ID) is defined as the variance-to-mean ratio or dispersion index, it is a
statistical measure used to quantify whether a set of observed occurrences are clustered or dispersed
compared to a standard statistical model it indicates.
IfID = 1: The data follows a Poisson distribution, indicating random occurrence.
IfID < 1: The data is under-dispersed, indicating a more regular pattern than random.
IfID > 1: The data is over-dispersed, indicating clustering or clumping.

The ID and coefficient of variation (CV) for the DE-MTLCh distribution can be obtained as

Variance 193 (pz)l/z
ID=—"=="F andCV = -2—,
Mean 1 i

(23)
The mean, variance, Sk, Kur, ID and CV of the DE-MTLCh distribution for different values of the

parameters are calculated numerically and displayed in Table 1using (19)-(23).
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Table 1
Some descriptive measures of the DE-MTLCh distribution

for different values of the parameters

parameters Descriptive Measures

a | 6 | B | A |Mean | Variance |Kur Sk ID CvV
0.3 0.2418 | 0.3236 9.6727 |2.5685 | 1.3382 |2.3525
0.70.9 05|05 ]|0.5101 | 0.5684 43499 | 13985 | 1.1142 |1.4779
0.9 0.6250 | 0.6384 3.5818 | 1.1188 | 1.0214 | 1.2783

0.1 | 1.0081 | 2.0507 3.9865 | 1.3545 |2.0342 | 1.4205
0.3 0.9 05]0.6|0.1932 |0.2454 11.0845 | 2.7929 | 1.2701 | 2.5640
0.8 | 0.1300 | 0.1527 14.1052 | 3.2390 | 1.1730 | 3.0059

1.5 1.3279 | 1.1404 2.5503 |0.4684 | 0.8587 |0.8031
03052 |08 ]1.5697 |1.1027 2.5475 | 0.2883 | 0.7024 | 0.6692
2.5 1.7597 | 1.0410 2.6201 | 0.1899 | 0.5915 | 0.5798

From Table 1, it can be observed that as the values of parameters a increase, the mean and variance
of the DE-MTLCh distribution also increase. As A increases, the mean and variance decreases,
furthermore as 6 decreases the mean and variance increase. The DE-MTLCh distribution exhibit
positive Sk which implies that the tail of the distribution is longer on the right side. For the Kur value
(Kur > 3) indicates leptokurtosis distribution, while a value (Kur < 3) shows a platykurtic distribution.
Additionally, the mean of the distribution can be either smaller or larger than the variance, making it
suitable for modeling both over-dispersed and under-dispersed data. The varying CV values suggest
different levels of variability across the datasets. Lower CV values indicate less dispersion around the
mean, while higher CV values suggest greater variability.

213 The order statistics of the discrete exponentiated-modified Topp-Leone Chen
distribution

Order statistics play an important role in various fields of statistical theory and practice. The cdf of the
i" order statistic of the DE-MTLCh is given by

Fin(0,B,0,0) = 2 () FIGx: 6, 6, 00 )71 — F(x; 6,8, 0, )] (24)
Using the binomial expansion for [1 — F(x; 6, 8, «, A)|" "and substituting (10) in (24) it follows that
FDEi:n(X; 9, B, , A)

=3 (1) Fes 0,8, DI Es () (—DIFCs 6,6, 0,07,

Fpein % 0,8, 0,2) = X1 (n) =0 (n n r) (—1) [[1 - ezx(l‘eﬁ(“l))]re(rﬂ)_ (25)

r J
Special cases
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Case I: if i =1 in (25), one can obtain the distribution function of the first order statistics, as given

below

FDEl(X; 9, , )\, B) =1- [1 — FDE(X; 9, (0.8 )\, B)]n

—1— [1 _ [1 _ e27x(1—eB(x+1))]ae]n. 26)

Case II: if i = n in (25), the cdf of the largest order statistics, it as follows:

nab

Foe, (66,0, B) = [F(x; 8,4, B)]" = [1 — e (=P 70 27)
The corresponding pmf of the i™™ order statistics can be expressed as

n! F(x) i —j
P(Xe) =%) = 5momy Jren V(L — W)y, (28)

where v isarv.
Using the binomial expansion for (1 — v)*! then, the pmf of (28) is

F(x)

sy = 1) = n! Z“‘i (n - i)( 1)1’f i+-14
DE\AG) = X) = i—1D!'(n—1i)! j=0 j F(X—l)V '

— n! n-i (N —1 _Ni( L
T (i-1)!(n-i)! i=0( j )( D (i+j)

o "
x [[1 — (i) o _ [1— et “*”]. (29)

See, Arnold et al. (2008).

The pmf of the smallest order statistics is obtained by substituting i = 1 in (28) as given below

Pog(X(1y =x) = #(!n_l)!f:(ix_)l)vl‘l(l —v)"ldv

= 1 [[1- e [1 - gm0 (30)
Also, the pmf of the largest order statistic is obtained by substituting i = n in (28) as follows:
Poe (X = X) = [[1 _ ezx(l_es(x+1>)]n°‘9 _ [1 _ ezx(1—es(x>)]me]_ (31)

2.1.4  Rényi entropy

Entropy refers to the amount of uncertainty associated with the rv. It has many applications in several

fields such as econometrics, information theory, survival analysis and computer science [see, Rényi

(1961)].
The measure of variation of the uncertainty of the discrete rv (drv) X can be expressed as
< ab - af67M
In(X) — ﬁlOgZx [[1 _ e”‘(l‘eB( +1))] _ [1 _ ezx(1—e3 )] ] , x=0,1,2,.... (32)

The Shannon entropy can be defined by
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IX) =— Z [[1 —~ e27\(1-e‘“’”1))]°(e _ [1 - ez;\(1—e6x)]ae]

ad o0
x log [[1 _ ezx(1—e6(x+1))] _ [1 _ ezx(l—eﬁx)] ], x=0,12,.. (33)

The Shannon entropy can be derived as a particular case of the Rényi entropy when n — 1.

2.1.5.1 Mean residual lifetime function, mean time to failure, mean time between failure and

availability

Kemp (2004) defined the MRL as

Zlio:xoﬂ s(k)

s(xg)

ab
= 1_[1_e2x(11—e3(x0))]ae i1 (1 — [1 - ezx(1—eﬁ<k))] ) (34)

MRL(x,) =

MTTEF, MTBF and Av are reliability terms based on methods and procedures for lifecycle predictions
for a product. MTTF, MTBF and Av are ways of providing a numeric value based on a compilation of
data to quantify a failure rate and the resulting time of expected performance. In addition, in request
to design and manufacture a maintainable system, it is necessary to predict the MTTF, MTBF and Av.
[see, Eliwa et al. (2020)].

The MTTF is given as

A Bx of
MTTF = $2, S(x) = %y 1-[1-e20=P)7 x>0, (35)
Then the MTBEF is given as
MTBF = ———— = —= — x > 0. (36)

log[SpE ()] log[l_[l_ezx(l_esx)]

Av is considered as being the probability that the component is successful at time t,

__ MTTF

Av = .
MTBF

(37

3. Maximum Likelihood Estimation

This section is devoted to estimate the vector of the parameters, @ = (8, @, 5, A1), sf, hrf and ahrf of the

DE-MTLCh (6, a, B, A)distribution, based on Type-II censored samples, also confidence intervals of
the parameters 6, a, 5,4 ,sf, hrf and ahrf are derived.
Suppose that x4, x5, ..., x,- 1s a Type-1I censored sample of size r obtained from a life-test on n items
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whose lifetimes have a DE-MTLCh (6, a, B, A)distribution. Then the likelihood function is

Lo (3 ) o {TTiy PG} Spg (e )™, (38)
where Ppgp(x) and Spg(x) are given, respectively, by (9) and (11).

Lpg (ﬂg) x {ﬁ <[1 — eZA(l—eﬁ(xm))]a@ ~ [1 B ez/l(l—eﬁ’(xi))](m)}’

i=1
X [1 _ [1 _ eZl(l—eﬁ(xr))]ae]n_T’

n-—-r
LDE <P:_ {1_[( [wi1]%¢ — [wi,] ae)l [1 ae]
where
Wy = [1 _ eZA(l—e‘B(xi"'l))]’ Wiy = [1 _ ezl(l_eﬁ(xr))] and w, = [(1 _ eZA(l—eer))]. (39)
The natural logarithm of the likelihood function is given by

fpg = InLpg (g, E) x In {Hir:l([wil]ae — [Wiz]“e) [1 — [Wr]ae]n—r}

o< N, ln{ w;;]%? [le]“e} +(n— r)ln[l - [w, “9] (40)

Considering the four parameters 8, a,  and 4 are unknown and differentiating the In likelihood

function in (40), with respect to 8, a, S and A one can obtain

9tpe ro ([wial®® @inwi)—[wi]*° (@) in(wi)] } w190 (@) In(wy)
e =) e 41
o = [NCETmE (=) ey @41
f’f’DE [[wia1%° (O)in(win)~[w ﬂ““’(e)m(wlz)]} w128 @) tn(wy)
)T a6 42

Z [[Wu] =[w 12]“] (Tl T) [1_[ ]a9] ’ ( )
d0¢pE r [(@8[w;i 1129~ iy |- [( ablw;z]® )le]} (a@(w,«)‘w ),
op =1 [[w;1]190 —[w;,]29] (n—7) [1—[w 18] (43)

where

Wy = [62,1 (1- eﬁ(xi+1))] (22 POt D) (x; + 1),

Wi, = [82'1 1 eﬁ(xi))] (2/1 eB(xi))(xi),

W, = [62/1(1—e3(xr)):| (2/1 ef’)("r))(xr).

adlwi] Wi.—( afw;,]%* Wigs a6 (w,) %01 W,
afDE_z: {[(9 i [) (9 ) ]}_( )(9( ) ) (44)

[wig]®6— [wlz]ae] [1-[wy]26] 7
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Wiz, = [—eza(l_eﬁ(xi))] 2(1 - eﬁ(xi)).
and
W, = [—e22 (0777 2(1 - eFlm),

Then the ML estimators of the parameters denoted by 8, &, and A are derived by equating the
nonlinear likelihood equations (41-44) to zeros and solving numerically.

Depending on the invariance property, the ML estimators of Spg(x), hpg(x)and ahpg(x) can be
obtained by replacing @,8, B and A with their corresponding ML estimators 8,& ,53 and 1 ,
respectively in (11), (12) and (13), as given below

3 b5 P 3 22(1-¢P%) af
SDEML(X; 9, C’Z\,IB,A) =1- [1 —e ( —e ] , x=0,1,2,.., (45)

EDEML(X; 9} &\J EI A) = NNT , X = 0,1,2, ey (46)
1_[1_ 21(1—eﬁx)]
and
1— [ 1 eBx
ahpg ,, (%:0,8,8,2) = In =0,1,2, ... (47)
1_[ A(1-ePO+D) ]

When the sample size is large and the regularity conditions are satisfied, the asymptotic

distribution of the ML estimators is ¢ ~Bivariate Normal ((p, -1 ((p)), where ¢ = (0,a,B,1),

D = (67, &, B ,7\) and [~1 ((p) is the asymptotic variance covariance matrix of the ML estimators of

the parameters a, 6, f and A which is the inverse of the asymptotic observed Fisher information matrix.
The asymptotic observed Fisher information matrix can be obtained as follows:

(o)~ - [z ]

The asymptotic 100 (1 — 7)% confidence intervals for 6, a, 8, A, Spe(x), hpg(x)and ahpg(x)are

ij=12,34 (48)
0=7,

given, respectively, by
=@ —Zz0p. and Up=0+Zz0;. (49)
2 2
where L, and U, are the lower [limit(LL) and upper limit (UL) respectively, @  is

0,a,B,\ Spp(x), hpg(x) or ahpg (x), where Z is the 100%(1—%) the standard normal

percentile, (1 — 1) is confidence coefficient and o is the standard deviation.
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4. Numerical Illustration

This section aims to investigate the precision of the theoretical results based on simulated and real
data.
4.1 Simulation study
In this subsection, a simulation study is conducted to illustrate the performance of the presented ML
estimates based on generated data from the DE-MTLCh distribution. The ML averages of the estimates,
sf, hrf and ahrf based on complete sample and Type-II censoring are computed. Moreover, confidence
intervals of the parameters, sf, hrf and ahrf are calculated. The simulation study is performed using
Mathematicall.

Tables 2 shows the averages of the ML estimates, relative absolute biases (RABs), mean square errors
(MSEs), variances of the parameters and 95% confidence intervals under three levels of =X 100

percentage of uncensored observations Type II censoring 60%, 80% and 100%. Table 3 displays the
same computational results, but for different population parameter values from the DE- MTLCh
distribution for different samples of size n, where (n = 30, 60and 120) and number of replications
(NR)= 1000.

The averages, RABs, variances of the ML estimates of the parameters, sf, hrf and ahrf are computed
as follows:

1) Averages = Lich estimates
NR

2) RABs (estimate) = 2as(estimate)|

true value
3) Variances (estimate) = ER (estimate) — bias?(estimate)

. . . VR (estimated— lue)?
4) Estimated risk (estimate) = Z“l(esumat;R true value)
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Table 2:

Averages, relative absolute biases, mean square errors, variances of the ML estimates, 95%

confidence intervals of the parameters, survival, hazard rate and alternative hazard rate functions at

NR =1000,(6=0.5,

a=0.6 ,= 0.037,14=0.01)

(xo = 1 ) from the DE-MTLCh distribution for different samples of size n, censoring size r,

n r | Parameters | Average | RAB MSE Variance UL LI length
o 0.5564 | 0.1127 | 0.0048 0.0016 | 0.6364 | 0.4763 | 0.1601

a 0.6676 | 0.3352 | 0.0069 0.0024 | 0.7637 | 0.5715 | 0.1921

B 0.0430 | 0.1637 | 0.0001 0.0001 | 0.0637 | 0.0223 | 0.0413

18 2 0.0121 | 0.2116 | 0.00001 | 0.00001 | 0.0188 | 0.0053 | 0.0135
Spe(xe) | 0.9195 | 0.0397 | 0.0017 0.0005 | 0.9653 | 0.8737 | 0.0915
hps(x,) | 00258 | 0.1705 | 0.00005 | 0.000024 | 0.0356 | 0.0160 | 0.0195
ahpp(xg) | 00261 | 0.1723 | 0.00005 | 0.000026 | 0.0362 | 0.0161 | 0.0200

o 0.5506 | 0.1012 | 0.0040 0.0014 | 0.62503| 0.4762 | 0.1487

a 0.6607 | 0.3148 | 0.0057 0.0020 | 0.75004| 0.5714 | 0.1785

B 0.0392 | 0.0597 | 0.00002 | 0.00002 | 0.04838| 0.0300 | 0.0183

30 | 24 2 0.0113 | 0.1396 | 9.05 x 1076| 7.10 x 10| 0.0166 | 0.0061 | 0.0104
Spe(xe) | 09190 |0.0392 | 0.0018 0.00061 | 0.9676 | 0.8705 | 0.0970
hps(x,) | 00251 | 0.1901 | 0.00006 | 0.000026 | 0.0353 | 0.0150 | 0.0202
ahpp(xg) | 00255 | 0.1921 | 0.0000 | 0.000029 | 0.0359 | 0.0151 | 0.0207

o 0.5414 | 0.0828| 0.0030 0.0013 | 0.6123 | 0.4704 | 0.1418

a 0.6497 | 0.3001| 0.0043 0.0018 | 0.7348 | 0.5645 | 0.1702

B 0.0378 | 0.02413| 7.97 x 1076| 7.17 x 10~¢| 0.0431 | 0.0326 | 0.0105

30 2 0.0107 | 0.0797 | 5.90 x 1076| 5.27 x 1076| 0.0152 | 0.0062 | 0.0089
Spe(¥e) | 0.9147 | 0.0343| 0.0015 0.00061 | 0.9632 | 0.8662 | 0.0970
hpp(x,) | 00257 | 0.1739| 0.00005 | 0.000025 | 0.0355 | 0.0158 | 0.0196
ahyp(xg) | 00260 | 0.1758 | 0.00005 | 0.000028 | 0.0361 | 0.0159 | 0.0201(

o 0.5501 | 0.1002 | 0.0038 0.0013 | 0.6229 | 0.4773 | 0.1456

a 0.6601 | 0.3418 | 0.0056 0.0019 | 0.7475 | 0.5727 | 0.1747

B 0.0410 | 0.1098 | 0.00005 | 0.00004 | 0.0535 | 0.0285 | 0.0250

36 2 0.0117 | 0.1745 | 0.0000 0.00001 | 0.0183 | 0.0051 | 0.0132
Spe(xe) | 09175 | 0.0375 | 0.0016 0.0005 | 0.9615 | 0.8734 | 0.0880
hpp(x,) | 00258 | 0.1685 | 0.00004 | 0.00001 | 0.0344 | 0.0172 | 0.0172
ahpp(xg) | 00262 | 0.1704 | 0.00004 | 0.00002 | 0.0350 | 0.0173 | 0.0176

g 0.54114 | 0.0822 | 0.00284 0.0011 | 0.6077 | 0.4745 | 0.1332

60 a 0.6493 | 0.3148 | 0.0041 0.0016 | 0.7293 | 0.5694 | 0.1598
B 0.0383 | 0.0369 | 0.00001 |9.97 x 10~ 0.0445 | 0.0321 | 0.0123

48 A 0.01102 | 0.1029 | 8.27 x 1076| 7.21 x 10~¢| 0.0162 | 0.0057 | 0.0105
Spe(xe) | 0.91435 | 0.0339 | 0.0014 0.0005 | 0.9585 | 0.8701 | 0.0883
hpp(x,) | 00259 | 0.1659 | 0.00004 | 0.00001 | 0.0344 | 0.0174 | 0.0172
0.02630 | 0.1677 | 0.00004 | 0.00001 | 0.0350 | 0.0175 | 0.0174

ahpg(xo)
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Table 2 (Continued)

n r | parameters | Average | RABs MSE Variance UL IL Length
0 0.5343 | 0.0686 0.00214 0.0009 0.5953 | 0.4732 | 0.1221
a 0.6411 | 0.2921 0.0030 0.0013 0.7144 | 0.5678 | 0.1465
B 0.0374 | 0.0109 |3.82x107% 3.65 % 107% 0.0411 | 0.0336 | 0.0074
60 | 60 A 0.01061 | 0.0610 | 5.77 X 107% 5.40 x 107 0.0151 | 0.0060 | 0.0091
Spe(x0) 0.9109 | 0.0301 0.0011 0.00049 | 0.9543 | 0.8675 | 0.0860
hpg (x0) 0.0263 | 0.1523 0.00004 0.00001 | 0.0348 | 0.0179 | 0.0168
ahpg(xo) 0.0267 | 0.1541 0.00004 0.00001 | 0.03539| 0.01802| 0.0173
0 0.5383 | 0.0767 0.0027 0.00127 | 0.6083 | 0.4684 | 0.1399
@ 0.6460 | 0.3445 0.0039 0.00183 | 0.7300 | 0.5620 | 0.1679
B 0.0394 | 0.0669 0.00002 0.000018 | 0.0478 | 0.0311 | 0.0166
72 A 0.0115 | 0.1579 0.0000 0.00001 | 0.0180 | 0.0050 | 0.0130
Spe(x0) 0.9102 | 0.0293 0.0011 0.0004 0.9531 | 0.8674 | 0.0857
hpg (o) 0.0270 | 0.1310 0.00003 0.00001 | 0.0345 | 0.0195 | 0.0150
ahpg(xo) 0.0274 | 0.1325 0.00003 0.00001 | 0.0351 | 0.0197 | 0.0154
0 0.5312 | 0.0625 0.0018 0.00090 | 0.5902 | 0.4722 | 0.1179
a 0.6375 | 0.3171 0.0027 0.00130 | 0.7083 | 0.5667 | 0.1415
B 0.0375 | 0.0160 |4.35x 107% 3.98 x 107 0.0415 | 0.0336 | 0.0078
120 | 96 A 0.01096 | 0.0965 |8.95x 107° 8.02 x 107% 0.01653| 0.0054 | 0.0111
Spe(xg) 0.9079 | 0.0266 0.0009 0.00042 | 0.9483 | 0.8675 | 0.0808
hpg (o) 0.0270 | 0.1290 0.00003 0.00001 | 0.0345 | 0.0196 | 0.0148
ahpg(xo) 0.0274 | 0.13062 0.00003 0.00001 | 0.0351 | 0.0198 | 0.0152
0 0.5274 | 0.0548 0.0015 0.0007 | 0.5819 | 0.4729 | 0.1089
a 0.6329 | 0.2893 0.0021 0.0011 0.6982 | 0.5675 | 0.1307
B 0.0371 | 0.0037 | 1.84 x 107% 1.82 x 107 0.0397 | 0.0344 | 0.0052
120 A 0.0105 | 0.0500 | 6.03 x 107 5.78 x 107 0.0152 | 0.0057 | 0.0094
Spe(xg) 0.9065 | 0.0250 0.0008 0.0003 0.9455 | 0.8674 | 0.0781
hpi (x0) 0.0271 | 0.1266 0.00002 0.00001 | 0.0344 | 0.0199 | 0.0145
0.0275 | 0.1282 0.00003 0.00001 | 0.0350 | 0.0200 | 0.0149
ahDE(xO)
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Table 3
ML averages, relative absolute biases, mean square errors, variances of the ML estimates, 95%
confidence intervals of the parameters, survival, hazard rate and alternative hazard rate functions at
(xo = 1 ) from the DE-MTLCh distribution for different samples of size n and censoring size 7,
NR =1000,(0 =0.48,a =0.6 , =0.037,A=0.2)

n r | parameters | average | RAB MSE Variance UL LI length
0 0.6760 | 0.4083 | 0.0430 0.0045 | 0.8087 | 0.5432| 0.2654

a 0.8450 | 0.2459 | 0.0671 0.0071 | 1.0109 | 0.6790| 0.3318

B 0.0682 | 0.8459 | 0.0015 0.0006 | 0.1163 | 0.0201 | 0.0962

18 A 0.3402 | 0.7013 | 0.0331 0.0134 | 0.5676 | 0.1128| 0.4548

Spe(xo) 0.8265 | 0.1776 | 0.0168 0.0013 | 0.8973 | 0.7557 | 0.1416
hpe(x,) | 01051 | 0.1012 | 0.0011 0.0010 | 0.1695 | 0.0407 | 0.1288
0.1117 | 0.1139 | 0.0015 0.0013 | 0.1846 | 0.0388| 0.1457

ahpg(xo)
o 0.6184 | 0.2884 0.0235 0.0043 | 0.7475 | 0.4892 | 0.2582
a 0.7730 | 0.0460 0.0367 0.0067 | 0.9344 | 0.6116| 0.3228
p 0.0495 | 0.3394 0.0003 0.0002 | 0.0783 | 0.0207 | 0.0575
30 | 24 A 0.2571 | 0.2859 0.0103 0.0070 | 0.4222 | 0.0921| 0.3300

Spe(xo) 0.8241 | 0.1741 | 0.0175 0.0025 | 0.9236 | 0.7245| 0.1991
hpe(x,) | 00837 | 0.1226 | 0.0005 0.0003 | 0.1214 | 0.0461 | 0.0753
0.0877 | 0.1259 | 0.0006 0.0004 | 0.1291 | 0.0462 | 0.0828

ahpg(xo)
o 0.5758 | 0.1997 0.0126 0.0034 | 0.6912 | 0.4605| 0.2306
a 0.7198 | 0.0454 0.0197 0.0054 | 0.8640 | 0.5757 | 0.2882
30 p 0.0410 | 0.1085 | 0.00006 | 0.00004 | 0.0543 | 0.0276| 0.0267
A 0.2244 | 0.1223 0.0047 0.0041 | 0.3513 | 0.0976| 0.2537

Spe(xo0) 0.8048 | 0.1466 | 0.0140 0.0034 | 0.9207 | 0.6888| 0.2318
hpe(xo) 0.0794 | 0.1677 | 0.0004 | 0.00020 | 0.1075 | 0.0514 | 0.0560
0.0829 | 0.1736 | 0.0005 | 0.00024 | 0.1133 | 0.0525| 0.0607

ahpg(xo)
6 0.6644 | 0.3842 0.0376 0.0036 | 0.7822 | 0.5461 | 0.2365
a 0.8305 | 0.2256 0.0588 0.0056 | 0.9783 | 0.6825| 0.2956
B 0.0656 | 0.7737 0.0011 0.0003 | 0.1029 | 0.0283| 0.0745
36 A 0.3179 | 0.5898 0.0226 0.0087 | 0.5012 | 0.1347 | 0.3665

Spe(xo) 0.8258 | 0.1765 | 0.0164 0.0028 | 0.8898 | 0.7617| 0.1280
hpe (o) 0.1002 | 0.0503 | 0.0005 0.0005 | 0.1459 | 0.0545| 0.0914
0.1060 | 0.0564 | 0.0007 0.0006 | 0.1572 | 0.0547 | 0.1024

ahpg(xo)
6 0.6011 | 0.2523 | 0.0187 | 0.0041 | 0.7266 | 0.4756| 0.2510
60 a 0.7514 | 0.0420 | 0.0292 | 0.0064 | 0.9083 | 0.5945| 0.3137
48 B 0.0470 | 0.2725 | 0.0002 0.0001 | 0.0674 | 0.0266| 0.0408
A 0.2452 | 0.2264 | 0.0093 0.0072 | 0.4124 | 0.0781 0.3343

Spe(xe) | 08150 | 0.1611 | 0.0156 | 0.0015 | 0.9188 | 0.7111] 0.2077
hpp(xo) | 00827 | 0.1335 | 0.0003 | 0.00022 | 0.1119 | 0.0535 | 0.0583
ahyy(xy) | 00864 | 0.1381 | 0.0004 | 0.00026 | 0.1183 | 0.0546 | 0.0636
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Table 3 (Continued)

n r | parameters | Average | RABs MSE Variance UL IL Length
8 0.5518 | 0.1496 0.0089 0.0038 | 0.6730 | 0.4305 | 0.2424

a 0.6897 | 0.0418 0.0140 0.0059 | 0.8412 | 0.5382 | 0.3030

B 0.0394 | 0.0668 | 0.00002 0.0000 | 0.0483 | 0.0306 | 0.0177

60 | 60 A 0.2122 | 0.0612 | 0.0043 | 0.0042 | 0.3397 | 0.0847 | 0.2550
Spe(xg) 0.8840 | 0.1170 0.0108 0.0040 | 0.9095 | 0.6585 | 0.2509

hpg (x0) 0.0814 | 0.1473 0.0003 0.00017 | 0.1074 | 0.0553 | 0.0520

ahne(x 0.0850 | 0.1527 0.0004 0.00020 | 0.1132 | 0.0568 | 0.0564

o 0.6560 | 0.3553 0.0323 0.0032 | 0.7623 | 0.5387 | 0.2236

a 0.8132 | 0.2004 | 0.0505 0.0050 | 0.9529 | 0.6734 | 0.2795

B 0.0623 | 0.6864 | 0.0008 0.0002 | 0.0922 | 0.0325 | 0.0596

72 A 0.2957 | 0.4789 | 0.0153 0.0062 | 0.4504 | 0.1411 | 0.3092
Spe(xg) 0.8237 | 0.1736 0.0159 0.0011 | 0.8897 | 0.7576 | 0.1320

hpg (x0) 0.0959 | 0.0052 0.0003 0.0002 | 0.1299 | 0.0620 | 0.0679

ahn-(x 0.1010 | 0.0074 | 0.0003 0.0003 | 0.1388 | 0.0632 | 0.0756

8 0.5756 | 0.2096 | 0.0146 0.0043 0.7125 | 0.4487 | 0.2638

a 0.7195 | 0.0418| 0.0229 0.0067 0.8907 | 0.5608 | 0.3298

120 B 0.0444 | 0.2208 | 0.0001 0.0000 0.0606 | 0.0297 | 0.0308
96 A 0.2245 | _0.1442| 0.0075 0.0067 | _0.3895 | 0.0681 | 0.3213
Spe(xg) 0.8984 | 0.1411| 0.0134 0.0035 0.9184 | 0.6833 | 0.2350

hpg (x0) 0.0822 | 0.1339| 0.0003 0.00014 | 0.1075 | 0.0578 | 0.0496

ahnel(x 0.0859 | 0.13893] 0.0003 0.00017 | 0.11374| 0.0593 | 0.0540

g 0.5309 | 0.1060 0.0058 0.0032 0.6425 | 0.4179 | 0.2242

a 0.6636 | 0.0400 0.0090 0.0050 0.8031 | 0.5224 | 0.2807

B 0.0384 | 0.0386 0.0000 0.0000 0.0447 | 0.0318 | 0.0129

120 A 0.2075 | 0.0376 | 0.0040 0.0040 | _0.3201 | 0.0929 | 0.2271
Spe(xg) 0.8621 | 0.0872 0.0074 0.0037 0.8840 | 0.6403 | 0.2437

hpg (x0) 0.0846 | 0.1142 0.0002 0.00015 | 0.10889| 0.0603 | 0.0485

ahnel(x 0.0884 | 0.1186 0.0003 0.00018 | 0.1148 | 0.0621 | 0.0526

4.2 Concluding remarks

From Tables 2 and 3 one can notice that:
1. The RABs, MSEs, and variances of the ML estimates of the parameters, sf, hrf, and ahrf decrease
when the sample size n increases. Also, the lengths of the confidence intervals get shorter when

the sample size increases in most cases.

2. The RABs, MSEs and variances of the ML estimates of the parameters, sf, hrf, and ahrf decrease

when the level of censoring decreases.
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3. In general, all the results of the RABs, MSEs and variances obtained for complete sample sizes,
are less than the corresponding results for censored samples. Also, results get better when the

sample size and level of uncensored samples increases.

5. Application

This section is devoted to illustrate the flexibility and applicability of the proposed distribution using
two real data sets. The proposed distribution is compared with different competitive distributions such
as discrete Marshall-Olkin inverted Topp-Leone (DMOITL) distribution introduced by Almetwally et
al. (2021), discrete exponentiated Chen (DE-Ch) distribution suggested by Alotaibi et al. (2023),
discrete Half Logistic (DHL) distribution considered by Hegazy et al. (2020), discrete generalized
inverted exponential (DGIE) distribution proposed by AbdElaziz et al. (2022), discrete Burr (DB)
distribution presented by Krishna and Pundir (2009), and discrete generalized Rayleigh (DGR)
distribution studied by Alamatsaz, et al. (2016). The fitted probability distributions are compared using
Akaike information criterion (AIC), Akaike information criterion with correction (AICC), Bayesian
information criterion (BIC) and Hannon-Quinn information criterion (HQIC). The best-fitting
distribution corresponds to the lowest values of AIC, AICC, BIC, and HQIC, and the highest p-value

associated with the Kolmogorov-Smirnov (K-S) goodness-of-fit test.

where  AIC = —2In(L) + 2k, AICC = AIC + 22 BIC = —2In(L) + kin(n),
and

HQIC = -2In (L) + 2k ln(ln(n)), where k is the number of the parameters, n is the sample size

and L is the natural logarithm of the value of the likelihood function evaluated at the ML estimates.
Tables 4 and 5 display the values of P-value, AIC, AICC, BIC and HQIC for the two real data sets.
Kolmogorov-Smirnov (K-S) goodness of fit test is applied to check the validity of the fitted model. The

P-values are respectively 0.9434 and 0.2742. It shows that the DE-MTLCA fits the data very well.
Data set 1

The first data set contains 47 observations, and it refers to numbers of daily deaths in Egypt due to
COVID-19 infections from 8§ March to 30 April 2020. The data are: 1, 1,2,2,1,1,2,4,5,1, 1, 3, 6,
6,4,1,5,6,6,8,5,7,7,9,9,15,17,11, 13,5,14,5, 13,9, 19, 15, 11, 14, 12, 11, 7, 13, 10, 20, 22, 21

and 12. The data are available on worldometer website at
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https://www.worldometers.info/coronavirus/country/egypt/.

Table 4 presents the ML estimates, corresponding standard errors (SEs), P-values, AIC, AICC, BIC
and HQIC. It is observed that all models fit the data set. The proposed distribution has the lowest
values of the AIC, AICC, BIC and HQIC and the highest P-value. Hence, the proposed distribution is

the best fit for this data compared with other distributions.

Table 4
Parameter estimates with their corresponding standard errors
and information criteria for the real data set I

Models Estimates SEs P-value AIC BIC AICC HQIC

6 = 0.6263 | 0.4586
a = 1.0021 | 04515
DE-MTLCh | § =0.1787 | 0.4670 | 0.9434 293.75 301.75 309.15 | 302.702
A =0.0466 | 0.4695

6 =099 | 04517
DE-Ch a=0.5 0.4610 | 03371 | 317.537 | 323.537 | 329.087 | 324.095
B =05 0.4610

6 = 0.7883 | 0.4555
DMOITL 0.0820 | 319.507 | 325.507 | 331.058 | 344.549
a = 0.9449 | 0.4526

A =3.0064 | 0.4146
DGIE 0.0835 | 330.869 | 334.869 | 338.569 | 335.142
a = 0.5021 | 0.4609

A =0.1316 | 0.4678
DGR 0.0524 | 458.647 | 462.647 | 466.377 | 462.92
a = 3.446 | 0.3919

A =10.5592 | 0.4598
DB 0.0455 368.07 372.07 | 375.771 | 372.343
a = 0.8235 | 0.4549

The total time test (TTT) plot can be used to get information about the shape of the hrf of a given data
set, which helps in selecting a particular model to fit a proposed data set. The fitted pmf, PP and QQ
plots indicate that DE-MTLCh distribution fit for the two real data sets.

Figures 4 shows that the TTT plot of real data set I has bathtub- shaped hrf. The fitted pmf, P-P and Q-
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Q plots indicate that the DE-MTLCh distribution provides the best fit for this data.
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Figure 4. TTT, fitted pmf, P-P and Q-Q plots of
the DE-MTLCh distribution for real Data set [
Data set 11
The second data represents survival times (in weeks) for 33 patients. The patients are suffering from
acute myelogenous leukemia (see Feigl and Zelen (1965)). The data are: 3, 3, 30, 3, 8, 4, 2, 4, 4, 65,
100, 108, 121, 4, 134, 16, 39, 26, 22, 1, 143, 56, 1, 5, 65, 17, 7, 16, 56, 65, 22, 43and 156.
From Table 5 one can observe that all models fit the real data set. But the proposed distribution has
lowest values of the AIC, AICC, BIC and HQIC and the highest P-value. Hence, the proposed

distribution is the best fit for this data compared with the other distributions.
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Table 5

Parameter estimates with their corresponding standard errors

and information criteria for the real data set 11

Models Estimates SEs P-Value AIC BIC AICC HQIC
6 =0.4708 | 1.3725
DE-MTLCh | « = 0.7533 | 1.3704
p =0.0233 | 1.3758 | 0.2742 325.46 333.46 | 339.446 | 334.888
A=0.0180 | 1.3759
6 = 0.8984 | 1.3745
DE-Ch a = 1.0544 | 1.3730 | 0.0898 | 575.891 | 581.891 | 585.381 | 581.719

B =0.2098 | 1377

6 =0.4398 | 1.3727
DMOITL a = 0.4956 0.0908 | 341.318 | 345.318 | 348.311 | 345.718
1.3723

DHL A =16.0273 | 1.2683 | 0.0935 345.69 | 347.869 | 348.569 | 347.198

A=10.0183 | 1.3759
DGR 0.0929 | 346.248 | 350.248 | 353.241 | 350.648
a = 0.6904 | 1.3709

A=04224 | 13729
DB 0.0810 | 343.508 | 347.508 | 350.501 | 347.908
a = 7494 1.3705

Figures 5 shows that the TTT plot of the real data set II has bathtub-shaped hazard rate. The fitted pmf,
P-P and Q-Q plots indicate that the DE-MTLCh distribution fits the data very well.
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Figure 5. TTT-plot, fitted pmf, PP-plot, and Q-Q plot of
the DE-MTLCh distribution for the Data set 11

6. Conclusion

In this paper, a new distribution with four parameters named DE-MTLCh distribution is introduced.
The pmf of the proposed distribution has unimodal, decreasing, and increasing curves. Also, the
corresponding hrf can be decreasing, increasing and bathtub shapes. Some important statistical
properties are obtained such as quantile, moments, order statistics and Rényi Entropy. Numerical
values for the mean, variance, Sk, Kur, the ID and Cv are presented. The method of the ML is used to
estimate the unknown parameters, sf, hrf and ahrf. Finally, the flexibility and applicability of the DE-
MTLCh distribution in real life was illustrated by applying two real data sets. The DE-MTLCh
distribution is more suitable for modeling real data sets as it is a better alternative to some other

distributions.
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